Semismooth Newton Augmented Lagrangian Method for Solving Lasso Problems

with Implementation in R

MyungWon Lee (s1687781)¹ Michael Renfrew (s1406083)²

^{1, 2}University of Edinburgh School of Mathematics

Final Year Project Presentation

< ロ > < 同 > < 回 > < 回 >

Outline

2 Semismooth Newton Augmented Lagrangian Method

Experiments

2

イロン イ団 とく ヨン イヨン

• Stands for *least absolute shrinkage and selection operator*. Introduced by Robert Tibshirani in 1996.

- Stands for *least absolute shrinkage and selection operator*. Introduced by Robert Tibshirani in 1996.
- In a regular least-squares regression with many more variables than number of subjects, there is a need to select features with the strongest effect.

- Stands for *least absolute shrinkage and selection operator*. Introduced by Robert Tibshirani in 1996.
- In a regular least-squares regression with many more variables than number of subjects, there is a need to select features with the strongest effect.
- This improves model explainability and reduces overfit.

- Stands for *least absolute shrinkage and selection operator*. Introduced by Robert Tibshirani in 1996.
- In a regular least-squares regression with many more variables than number of subjects, there is a need to select features with the strongest effect.
- This improves model explainability and reduces overfit.
- Lasso introduces a penalty term on the ℓ_1 -norm of the parameter vector in addition to the least-squares term:

$$\arg\min_{x}\left\{\frac{1}{2}\|Ax-b\|^{2}+\lambda\|x\|_{1}\right\}$$

- Stands for *least absolute shrinkage and selection operator*. Introduced by Robert Tibshirani in 1996.
- In a regular least-squares regression with many more variables than number of subjects, there is a need to select features with the strongest effect.
- This improves model explainability and reduces overfit.
- Lasso introduces a penalty term on the ℓ_1 -norm of the parameter vector in addition to the least-squares term:

$$\arg\min_{x} \left\{ \frac{1}{2} \|Ax - b\|^2 + \lambda \|x\|_1 \right\}$$

• This Lagrangian form is equivalent to a constrained minimisation problem

• Similar to *ridge regression*, which introduces a constraint on the ℓ_2 norm of the parameter vector, but better, since Lasso tends to push parameters to zero, whereas ridge only decreases their absolute value.

- Similar to *ridge regression*, which introduces a constraint on the l₂ norm of the parameter vector, but better, since Lasso tends to push parameters to zero, whereas ridge only decreases their absolute value.
- The optimal case would be *best-subset selection*, when all possible combinations of regressors are tried to produce the one with the lowest sum of squares for a given number of non-zero parameters.

- Similar to *ridge regression*, which introduces a constraint on the ℓ_2 norm of the parameter vector, but better, since Lasso tends to push parameters to zero, whereas ridge only decreases their absolute value.
- The optimal case would be *best-subset selection*, when all possible combinations of regressors are tried to produce the one with the lowest sum of squares for a given number of non-zero parameters.
- This is computationally costly, since it is O(m!), but Lasso gives a very good approximation to it.

イロン イ団 とく ヨン イヨン

- Similar to *ridge regression*, which introduces a constraint on the ℓ_2 norm of the parameter vector, but better, since Lasso tends to push parameters to zero, whereas ridge only decreases their absolute value.
- The optimal case would be *best-subset selection*, when all possible combinations of regressors are tried to produce the one with the lowest sum of squares for a given number of non-zero parameters.
- This is computationally costly, since it is O(m!), but Lasso gives a very good approximation to it.
- Both ridge and Lasso are *convex* problems, and can be solved with the correct numerical, computational methods

Original Paper

• A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems, Li, Xudong, Sun, Defeng and Toh, Kim-Chuan, SIAM Journal on Optimization, Vol. 28(1), pp 433-458, **2018**, SIAM

Convex Composite

Primal Problem

$$(\mathbf{P}) \quad \min\left\{\frac{1}{2}\|Ax - b\|^2 + \lambda\|x\|_1\right\}$$

where $A: \mathcal{X} \to \mathcal{Y}$, $h: \mathcal{Y} \to \mathbb{R}$, $p: \mathcal{X} \to (-\infty, +\infty]$ and $c \in \mathcal{X}$ is a vector. $h(\xi) = \frac{1}{2} \|\xi - b\|^2$ and $p(x) = \lambda \|x\|_1$

э

Convex Composite

Primal Problem

$$(\mathbf{P}) \quad \min\left\{\frac{1}{2}\|Ax - b\|^2 + \lambda\|x\|_1\right\}$$

where $A : \mathcal{X} \to \mathcal{Y}$, $h : \mathcal{Y} \to \mathbb{R}$, $p : \mathcal{X} \to (-\infty, +\infty]$ and $c \in \mathcal{X}$ is a vector. $h(\xi) = \frac{1}{2} \|\xi - b\|^2$ and $p(x) = \lambda \|x\|_1$

Dual Problem

$$(\mathbf{D}) \quad \max\left\{-\frac{1}{2}\|\xi\|^2 + \langle b,\xi\rangle \mid A^{\mathsf{T}}\xi + u - c = 0, \|u\|_{\infty} \leq \lambda\right\}$$

where $h^*(\xi) = -\frac{1}{2} ||\xi||^2 + \langle b, \xi \rangle$ and $p^*(x) = \mathbb{I}_{||x||_{\infty}}$ p^* and h^* : the Fenchel conjugate functions of p and h

Assumptions on the loss function

Assumption 1.

- 1. $\frac{h^*(\cdot)}{\lim_{k\to\infty} \|h^*(\xi^k)\|} = +\infty$ whenever $\{\xi^k\}$ is a sequence in int(dom h^*) $\neq \emptyset$ and converging to a boundary point ξ of int(dom h^*).
- p^{*}(·) is either an indicator function δ_p(·) or a support function δ^{*}_p for some nonempty polyhedral convex set P ⊆ X.

Assumption 2.

 $\underline{h}: \mathcal{Y} \to \mathbb{R}$ is a convex differentiable function whose gradient is $\frac{1}{\alpha_h}$ Lipschitz continuous i.e.

$$\|\nabla h(\xi') - \nabla h(\xi)\| \leq \frac{1}{\alpha_h} \|\xi' - \xi\|, \quad \forall \xi', \xi \in \mathcal{Y}$$

 $(h^*(\cdot) \text{ is strongly convex with modulus } \alpha_k)$

Assumptions on the loss function

Assumption 3.

<u>*h*</u> is essentially locally strongly convex, i.e. for any compact and convex set $\overline{K \subset dom \ \partial h}$, there exists $\beta_K > 0$ s.t.

$$egin{aligned} &(1-\lambda)h(\xi')+\lambda h(\xi)\leq h((1-\lambda)\xi'+\lambda\xi)+rac{1}{2}eta_{\mathcal{K}}\lambda(1-\lambda)\|\xi'-\xi\|^2,\ &orall\xi',\xi\in \mathcal{K} \end{aligned}$$

 $(\nabla h^*(\cdot) \text{ is locally } Lipschitz \ continuous \text{ and directionally differentiable on int}(dom h^*))$

Assumption 4.

The Karush Kuhn Tucker (**KKT**) system is nonempty and its solution is denoted as $\overline{\xi}, \overline{u}$ and \overline{x} .

An augmented Lagrangian method for (**D**)

• The Lagrangian function of (\mathbf{D}) is,

$$\ell(\xi, u; x) = h^*(\xi) + p^*(u) - \langle x, A^*\xi + u - c \rangle, \quad \forall (\xi, u; x) \in \mathcal{Y} \times \mathcal{X} \times \mathcal{X}$$

• Given $\sigma > 0$, the augmented Lagrangian function of (D) is,

$$\mathcal{L}_{\sigma}(ar{\xi},ar{u};ar{x}):=\ell(\xi,u;x)+rac{\sigma}{2}\|\mathcal{A}^*\xi+u-c\|^2,\;orall(\xi,u;x)\in\mathcal{Y} imes\mathcal{X} imes\mathcal{X}$$

• $\operatorname{Prox}_{\sigma\lambda\parallel\cdot\parallel_1}(x) = \arg\min_u \{\frac{1}{2} \|u - x\|^2 + \sigma\lambda\|u\|_1\}$ and $\operatorname{Prox}_{\sigma\rho}(x) = \operatorname{sgn}(x) \circ \max\{|x| - \sigma\lambda, 0\}.$

Algorithm 1

Algorithm Inexact Augmented Lagrangian Method

Let $\sigma_0 > 0$ be a given penalty parameter. Choose $(\xi^0, u^0, x^0) \in int(dom h^*) \times dom p^* \times \mathcal{X}$.

for $i = 0, 1, \dots, \infty$ do (1) Compute

$$(\xi^{k+1}, u^{k+1}) \approx \arg\min\{\Psi_k(\xi, u) := \mathcal{L}_{\sigma_k}(\xi, u; x^k)\}$$
(1)

(2) Compute

$$x^{k+1} = x^k - \sigma_k (A^* \xi^{k+1} + u^{k+1} - c)$$
 & update $\sigma_{k+1} \uparrow \sigma_\infty \leq \infty$

э

Global and Local Convergence

From [Rockafellar, 1976a¹ and 1976b²],

Convergence Criterion for inner subproblem (1)

$$\begin{aligned} (A) \quad \Psi_{k}(\xi^{k+1}, u^{k+1}) &- \inf \Psi_{k} \leq \frac{\varepsilon_{k}^{2}}{2\sigma_{k}}, \sum_{k=0}^{\infty} \varepsilon_{k} < \infty \\ (B1) \quad \Psi_{k}(\xi^{k+1}, u^{k+1}) &- \inf \Psi_{k} \leq \left(\frac{\delta_{k}^{2}}{2\sigma_{k}}\right) \|x^{k+1} - x^{k}\|^{2}, \ \delta_{k} \geq 0, \ \sum_{k=0}^{\infty} \delta_{k} < \infty \\ (B2) \quad \operatorname{dist}(0, \partial \Psi_{k}(\xi^{k+1}, u^{k+1})) \leq \left(\frac{\delta_{k}'}{\sigma_{k}}\right) \|x^{k+1} - x^{k}\|, \ 0 \leq \delta_{k}' \to 0 \end{aligned}$$

where, $\mathsf{dist}(x,\mathcal{C}) := \mathsf{inf}_{x'\in\mathcal{C}} \|x - x'\|$ for any $x \in \mathcal{X}$ and any $\mathcal{C} \subset \mathcal{X}$

¹Rockafellar, R.T., 1976. Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5), pp.877-898.

²Rockafellar, R.T., 1976. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of operations research 1(2), pp.97=116.

M.W.Lee & M.Renfrew (UoE)

Semismooth Newton method for inner problems

Definition (Semismoothness) [Miffin, 1977]³

Suppose that $M : \mathcal{X} \rightrightarrows \mathcal{L}(\mathcal{X}, \mathcal{Y}) \& F : \mathcal{X} \rightarrow \mathcal{Y}$, is a locally *Lipschitz continuous* function. *F* is said to be semismooth at $x \in \mathcal{X}$ if *F* is directionally differentiable at *x* and for any $G \in \partial F(x + \Delta x) = M(x + \Delta x) \& \Delta x \rightarrow 0$.

$$F(x + \Delta x) - F(x) - G(\Delta x) = o(\|\Delta x\|)$$

F is said to be strongly semismooth at $x \in \mathcal{X}$ if,

$$F(x + \Delta x) - F(x) - G(\Delta x) = O(||\Delta x||^2)$$

Then F is said to be semismooth (strongly semismooth) function on \mathcal{X} if it is semismooth (strongly semismooth) everywhere in \mathcal{X}

³Mifflin, Robert. "Semismooth and semiconvex functions in constrained optimization". In: SIAM Journal on Control and Optimization 15.6 (1977),pp. 959–972 $+ \bigcirc$ $2 + 2 + 2 + 2 + 2 = - \bigcirc$

Semismooth Newton method for inner problems

• While fixing $\sigma > 0$, we newly denote for $\xi \in int(\operatorname{dom} h^*)$,

$$\begin{split} \psi(\xi) &:= \inf_{u} \Psi(\xi, u) = \inf \mathcal{L}_{\sigma}(\xi, u; x) \\ &= h^{*}(\xi) + p^{*}(\operatorname{Prox}_{p^{*}/\sigma})(\bar{x}/\sigma - A^{*}\xi + c) \\ &+ \frac{1}{2\sigma} \|\operatorname{Prox}_{\sigma p}(\bar{x} - \sigma(A^{*}\xi - c))\|^{2} - \frac{1}{2\sigma} \|\bar{x}\|^{2} \end{split}$$

• We compute the 1^{st} and 2^{nd} derivatives

$$\nabla \psi(\xi) = \nabla h^*(\xi) - A \operatorname{Prox}_{\sigma p}(\bar{x} - \sigma(A^*\xi - c)), \ \forall \xi \in \operatorname{int}(\operatorname{dom} h^*)$$
$$\hat{\partial}^2 \psi(\xi) = \nabla^2 h^*(\xi) + \sigma A \operatorname{Prox}_{\sigma p}(\bar{x} - \sigma(A^*\xi - c))A^*$$

 where ∂²h^{*}(ξ) is the Clarke subdifferential of ∇h^{*}(·) at ξ and ∂ Prox_{σp}(x̄ - σ(A^{*}ξ - c)) is the Clarke subdifferential of the Lipschitz continuous mapping and Jacobian of Prox_{σp}(·) at x̄ - σ(A^{*}ξ - c).

Semismooth Newton method for inner problems

• Then solve the semismooth equation,

$$abla\psi(\xi)=0, \quad \xi\in \mathsf{int}(\mathsf{dom}\ h^*)$$

• Then we define the generalised Hessian of ψ at ξ ,

$$V := H + \sigma A P A^*$$

with $H \in \partial^2 h^*(\xi)$ and $P \in \partial \operatorname{Prox}_{\sigma p}(\bar{x} - \sigma(A^*\xi - c))$ where for the case of our paper, $h(\xi) = \frac{1}{2} ||\xi||^2 + b^T \xi$, $\nabla h^*(\xi) = \xi + b$, $\nabla^2 h^*(\xi) = \mathbb{I}_m$. $h^*(\cdot)$ is twice differentiable and $\operatorname{Prox}_{\lambda \| \cdot \|}$ is a piecewise linear function which are strongly semismooth.

Algorithm 2

Algorithm Semismooth Newton Method

Given the hyperparameter, $\mu \in (0, \frac{1}{2}), \tilde{\eta} \in (0, 1), \tau \in (0, 1] \& \delta \in (0, 1)$. **Choose** $\xi^0 \in \operatorname{int}(\operatorname{dom} h^*)$ and **for** $j = 0, 1, \ldots, \infty$ **do** (1) **Choose** $H_j \in \partial^2(\nabla h^*)(\xi^j) \& P_j \in \partial \operatorname{Prox}_{\sigma p}(\tilde{x} - \sigma(A^*\xi^j - c))$. Let $V_j := H_j + \sigma A P_j A^*$. Solve the following Linear System exactly or by the conjugate gradient algorithm to find d^j

$$V_j d + \nabla \psi(\xi^j) = 0, \text{ where } d = \Delta \xi$$

s.t. $\|V_j d^j + \nabla \psi(\xi^j)\| \le \min(\tilde{\eta}, \|\nabla \psi(\xi^j)\|)^{1+\tau}$

(2) Set $\alpha = \delta^{m_j}$ where m_j is the first nonnegative integer m for which,

$$\xi^j + \delta^m d^j \in \operatorname{int}(\operatorname{dom} h^*) \text{ and } \psi(\xi^j + \delta^m d^j) \leq \psi(\xi^j) + \mu \delta^m \langle \nabla \psi(\xi^j), d^j \rangle$$

(3) Set $\xi^{j+1} = \xi^j + \alpha_j d^j$

イロン イ団 とく ヨン イヨン

Convergence of semismooth Newton method

Let the sequence $\{\xi^j\}$ be generated by **Algorithm 2**,

Theorem

Assume that $\nabla h^*(\cdot)$ and $\operatorname{Prox}_{\sigma p}(\cdot)$ are strongly semismooth on $\int (\operatorname{dom} h^*)$ and \mathcal{X} then ξ^j converges to the unique optimal solution $\overline{\xi} \in \operatorname{int}(\operatorname{dom} h^*)$ and $\overline{u} = \overline{x} - \sigma(A^T \overline{\xi} - c)$ at least superlinearly, i.e.,

$$\|\xi^{j+1}-ar{\xi}\|=O(\|\xi^j-ar{\xi}\|^{1+ au}), ext{ for any } j\geq 0, V_j\in \partial^2\psi(\xi^j)$$

Convergence of semismooth Newton method

Let the sequence $\{\xi^j\}$ be generated by **Algorithm 2**,

Theorem

Assume that $\nabla h^*(\cdot)$ and $\operatorname{Prox}_{\sigma p}(\cdot)$ are strongly semismooth on $\int (\operatorname{dom} h^*)$ and \mathcal{X} then ξ^j converges to the unique optimal solution $\overline{\xi} \in \operatorname{int}(\operatorname{dom} h^*)$ and $\overline{u} = \overline{x} - \sigma(A^T \overline{\xi} - c)$ at least superlinearly, i.e.,

$$\|\xi^{j+1}-ar{\xi}\|=O(\|\xi^j-ar{\xi}\|^{1+ au}), ext{ for any }j\geq 0,V_j\in\partial^2\psi(\xi^j)$$

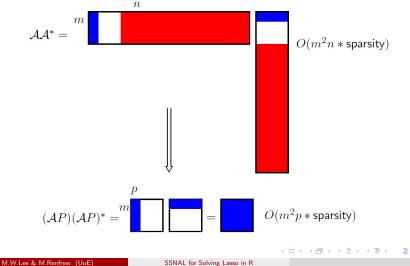
Then, the implementable stopping criterion from the stopping criteria (A), (B1) and (B2)

$$\begin{aligned} (A') \quad \|\psi_k(\xi^{k+1})\| &\leq \frac{\varepsilon_k}{\sqrt{\sigma_k/\alpha_h}} \\ (B1') \quad \|\nabla\psi_k(\xi^{k+1})\| &\leq \sqrt{\alpha_h\sigma_k}\delta_k \|A^*\xi^{k+1} + u^{k+1} - c\| \\ (B2') \quad \|\nabla\psi_k(\xi^{k+1})\| &\leq \delta' \|A^*\xi^{k+1} + u^{k+1} - c\|, \ 0 &\leq \delta'_k \to 0 \end{aligned}$$

where $\sum_{k=0}^{\infty} \varepsilon_k < \infty$ and $\sum_{k=0}^{\infty} \delta_k < \infty$ and $\|\nabla \psi_k(\xi^{k+1})\|$ is sufficiently small.

Semismooth Newton method

We can exploit the second order sparsity,



Semismooth Newton method

• We solve the linear system,

$$(\mathbb{I}_m + \sigma \mathcal{A} \mathcal{P} \mathcal{A}^{\mathsf{T}}) d = -\nabla \psi(\xi)$$

• We let $\mathcal{J} := \{j \mid |x_j| > \sigma\lambda, j = 1, ..., n\}$ and $|\mathcal{J}| = r$, the cardinality of \mathcal{J} . Then we have

$$\mathcal{APA}^{\mathsf{T}} = (\mathcal{AP})(\mathcal{AP})^{\mathsf{T}} = \mathcal{A}_{\mathcal{J}}\mathcal{A}_{\mathcal{J}}^{\mathsf{T}}$$

• For the case when *p* << *m*, instead of factorising an *m* × *m* matrix, we can invert a much smaller, *p* × *p*, matrix by using the Sherman-Morrison-Wood formula,

$$(\mathbb{I}_m + \sigma \mathcal{A} P \mathcal{A}^T)^{-1} = (\mathbb{I}_m + \sigma \mathcal{A}_{\mathcal{J}} \mathcal{A}_{\mathcal{J}}^T)^{-1} = \mathbb{I}_m - \mathcal{A}_{\mathcal{J}} (\sigma^{-1} \mathbb{I}_r + \mathcal{A}_{\mathcal{J}}^T \mathcal{A}_{\mathcal{J}})^{-1} \mathcal{A}_{\mathcal{J}}^T$$
$$(\mathcal{A} P)^* (\mathcal{A} P) = \square = \square O(p^2 m * \text{sparsity})$$

3

Semismooth Newton method

The relative KKT residual:

$$\eta = \frac{\|\bar{x} - \operatorname{Prox}_{\lambda\| \cdot \|} (\bar{x} - A^* (A\bar{x} - b))\|}{1 + \|\bar{x}\| + \|A\bar{x} - b\|} < \varepsilon$$

Number of nonzeros: nnz := min $\left\{ k \mid \sum_{t=1}^k |\hat{x}_t| \ge 0.999 \|x\|_1 \right\}$

2

Datasets

Data	Dimension(m; n)	$\lambda_{max}(AA^*)$
pyrim5	74; 201376	1.22e+06
triazines4	186; 635376	2.07e+07
abalone7	4177; 6435	5.21e+05
bodyfat7	252; 116280	5.29e+04
housing7	506; 77520	3.28e+05
mpg7	392; 3432	1.28e+04
space_ga9	3107; 5005	4.01e+03

Table: UCI and Statlib Testing Instances

Methylation data - 450k CpG methylation sites for 656 patients, and their ages

2

How was the algorithm implemented and tested in code?

• First, we installed MATLAB, cloned the SuiteLasso package.

How was the algorithm implemented and tested in code?

- First, we installed MATLAB, cloned the SuiteLasso package.
- Ensured it reproduced the results of the [Li et al, 2018] paper on UCI and Statlib data sets

How was the algorithm implemented and tested in code?

- First, we installed MATLAB, cloned the SuiteLasso package.
- Ensured it reproduced the results of the [Li et al, 2018] paper on UCI and Statlib data sets
- Then, we made drafts in R of the original MATLAB code with reference to the pseudocode in [Li et al, 2018]

How was the algorithm implemented and tested in code?

- First, we installed MATLAB, cloned the SuiteLasso package.
- Ensured it reproduced the results of the [Li et al, 2018] paper on UCI and Statlib data sets
- Then, we made drafts in R of the original MATLAB code with reference to the pseudocode in [Li et al, 2018]
- Changed norms, matrix-vector algebra functions, preconditioning functions, workflow and parameterisation as necessary.

イロン イ団 とく ヨン イヨン

Implementation details - debugging

To transform the drafts into working code, the packages were debugged side-by-side as follows:

• Breakpoints were introduced in both packages after every major event.

Implementation details - debugging

To transform the drafts into working code, the packages were debugged side-by-side as follows:

- Breakpoints were introduced in both packages after every major event.
- The numerical equality of key values was ensured
 - Primal objective
 - Dual objective
 - Relative difference
 - Parameter vectors x and x_i
 - σ for matrix scaling, etc...

Implementation details - debugging

To transform the drafts into working code, the packages were debugged side-by-side as follows:

- Breakpoints were introduced in both packages after every major event.
- The numerical equality of key values was ensured
 - Primal objective
 - Dual objective
 - Relative difference
 - Parameter vectors x and x_i
 - σ for matrix scaling, etc...
- Where we wanted to test the equality of a vector, equality of a suitable norm was taken as a substitute.

イロン イ団 とく ヨン イヨン

Implementation details - debugging

To transform the drafts into working code, the packages were debugged side-by-side as follows:

- Breakpoints were introduced in both packages after every major event.
- The numerical equality of key values was ensured
 - Primal objective
 - Dual objective
 - Relative difference
 - Parameter vectors x and x_i
 - σ for matrix scaling, etc...
- Where we wanted to test the equality of a vector, equality of a suitable norm was taken as a substitute.
- This revealed easily-fixed bugs in the R code when they occurred.

Implementation details - debugging

To transform the drafts into working code, the packages were debugged side-by-side as follows:

- Breakpoints were introduced in both packages after every major event.
- The numerical equality of key values was ensured
 - Primal objective
 - Dual objective
 - Relative difference
 - Parameter vectors x and x_i
 - σ for matrix scaling, etc...
- Where we wanted to test the equality of a vector, equality of a suitable norm was taken as a substitute.
- This revealed easily-fixed bugs in the R code when they occurred.
- $\bullet\,$ To begin, this was only performed on abalone7 data at one particular value of λ

• For the solution of the subproblem, the logical switch on how to invert the sparse Hessian was taken from [Li et al, 2018] and implemented in R, with the same debugging process as above.

- For the solution of the subproblem, the logical switch on how to invert the sparse Hessian was taken from [Li et al, 2018] and implemented in R, with the same debugging process as above.
- For the first several iterations on *abalone7* data, the R code was able to generate the same results on key variables as the MATLAB code.

- For the solution of the subproblem, the logical switch on how to invert the sparse Hessian was taken from [Li et al, 2018] and implemented in R, with the same debugging process as above.
- For the first several iterations on *abalone7* data, the R code was able to generate the same results on key variables as the MATLAB code.
- Towards the end of the algorithm, very slight differences (on the order of 10⁻⁵, and relatively small also) were observed

- For the solution of the subproblem, the logical switch on how to invert the sparse Hessian was taken from [Li et al, 2018] and implemented in R, with the same debugging process as above.
- For the first several iterations on *abalone7* data, the R code was able to generate the same results on key variables as the MATLAB code.
- Towards the end of the algorithm, very slight differences (on the order of 10⁻⁵, and relatively small also) were observed
- We attributed to different handling of floating point extrema.

- For the solution of the subproblem, the logical switch on how to invert the sparse Hessian was taken from [Li et al, 2018] and implemented in R, with the same debugging process as above.
- For the first several iterations on *abalone7* data, the R code was able to generate the same results on key variables as the MATLAB code.
- Towards the end of the algorithm, very slight differences (on the order of 10⁻⁵, and relatively small also) were observed
- We attributed to different handling of floating point extrema.
- O However, this did lead in general to the R code taking a few more iterations than MATLAB.

Nevertheless, after de-scaling and transforming the output vectors, we
obtained the exact same results as the MATLAB code in terms of objective
values, minimum and maximum parameter estimates and number of
non-zeros calculated according to:

• nnz := min
$$\left\{ k \mid \sum_{t=1}^{k} |\hat{x}_t| \ge 0.999 \|x\|_1 \right\}$$

イロト 不得 トイヨト イヨト

Overall results

Data	λ_c	Time (s)	Objective Value
		Matlab — R-SSNAL — glmnet	Matlab — R-SSNAL — glmnet
pyrim5	10^{-3}	2.16 — 9.92 — 0.40	0.07511 — 0.07511 — 0.0795
(74;201376)	10^{-4}	2.63 — 27.82 — 0.26	0.0109 - 0.0108 - 0.0260
triazines4	10^{-3}	13.79 — 170.92 — 3.3	0.5452 — 0.5452 — 0.5548
(186;635376)	10^{-4}	27.90 — 1580.88 — 5.48	0.1156 - 0.1156 - 0.1524
abalone7	10^{-3}	1.95 — 6.84 — 1.04	11407 — 11407 — 12158
(4177;6435)	10^{-4}	3.47 — 18.14 — 2.48	9289 — 9289 — 9716
bodyfat7	10^{-3}	1.64 — 5.00 — 0.30	0.2925 — 0.2925 — 1.334
(252;116280)	10^{-4}	2.27 — 7.52 — 0.98	0.03031 - 0.03031 - 0.2372
housing7	10^{-3}	2.92 — 13.88 — 0.60	2775 — 2775 — 2819
(506;77520)	10^{-4}	2.27 — 7.52 — 0.98	920.3 — 920.3 — 987.1
mpg7	10^{-3}	0.32 — 1.02 — 0.04	1669 — 1669 — 2076
(392;3432)	10^{-4}	0.37 — 2.90 — 0.16	890 — 890 — 985.57
space_ga9	10^{-3}	0.81 — 2.34 — 0.10	31.9 — 31.9 — 62.08
(3107;5005)	10^{-4}	2.27 — 7.52 — 0.98	19.88 — 19.88 — 31.63

Table: Performance comparisons of SSNAL in Matlab and R and glmnet

M.W.Lee & M.Renfrew (UoE)

2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overall results

Data	λ_c	min	max	NNZ
		Matlab — R-SSNAL — glmnet	Matlab — R-SSNAL — glmnet	Matlab — R-SSNAL — glmnet
pyrim5	10^{-3}	-0.0422 — -0.0422 — -0.1732	0.165 - 0.166 - 0.1067	70 — 70 — 166
(74;201376)	10^{-4}	-0.0897 — -0.0896 — -0.63454	0.172 - 0.172 - 0.064	77 — 78 — 1643
triazines4	10^{-3}	-0.163 — -0.163 — -0.163	0.161 — 0.161 — 0.182	565 — 572 — 292
(186;635376)	10^{-4}	-0.458 — -0.458 — -0.4525	0.300 - 0.296 - 0.2465	261 — 261 — 1573
abalone7	10^{-3}	-8.138.1313.49	11.7 - 11.7 - 11.7	24 — 24 — 21
(4177;6435)	10^{-4}	-13.3 — -13.3 — -12.97	16.1 — 16.1 — 7.96	59 — 59 — 129
bodyfat7	10^{-3}	-0.0465 — -0.0465 — -0.8133	1.05 - 1.05 - 1.202	2 — 2 — 17
(252;116280)	10^{-4}	-0.0526 — -0.0526 — -1.06	1.05 - 1.045 - 1.314	3 — 3 — 49
housing7	10^{-3}	-7.37 — -7.37 — -8.02	3.25 - 3.25 - 4.114	158 — 158 — 163
(506;77520)	10^{-4}	-13.1 — -13.1 — -19.7	11.3 — 11.27 — 8.39	281 — 281 — 484
mpg7	10^{-3}	-5.08 — -5.08 — -23.68	17 - 16.98 - 14.99	47 — 47 — 46
(392;3432)	10^{-4}	-11.8 — -11.8 — -18.93	15.3 - 15.3 - 16.38	128 — 128 — 172
space_ga9	10^{-3}	-1.141.143.68	0.978 — 0.978 — 3.77	14 — 14 — 19
(3107;5005)	10^{-4}	-3.56 — -3.56 — -4.59	2.64 — 2.64 — 4.71	38 — 38 — 58

Table: Performance comparisons of SSNAL in Matlab and R and glmnet

æ

ヘロト ヘロト ヘヨト ヘヨト

The algorithm was profiled.

2

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).
- For very large problems, we implemented fast algorithms suggested on StackOverflow in RCpp, which can execute fast C++ code as an R function.

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).
- For very large problems, we implemented fast algorithms suggested on StackOverflow in RCpp, which can execute fast C++ code as an R function.
- We then exported the (polynomial basis expanded) data from MATLAB to R and compared it to the glmnet package using a manual 10-fold cross-validation for the seven UCI data sets.

イロト 不得 トイヨト イヨト

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).
- For very large problems, we implemented fast algorithms suggested on StackOverflow in RCpp, which can execute fast C++ code as an R function.
- We then exported the (polynomial basis expanded) data from MATLAB to R and compared it to the glmnet package using a manual 10-fold cross-validation for the seven UCI data sets.
- The objective function for *glmnet* was suitably transformed.

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).
- For very large problems, we implemented fast algorithms suggested on StackOverflow in RCpp, which can execute fast C++ code as an R function.
- We then exported the (polynomial basis expanded) data from MATLAB to R and compared it to the glmnet package using a manual 10-fold cross-validation for the seven UCI data sets.
- The objective function for *glmnet* was suitably transformed.
- Methylation data could not undergo a cross-validation because the algorithm did not converge in sensible time, but we did show better objective values around the optimal lambda obtained by cv.glmnet

- The algorithm was profiled.
- Slow steps required either a reworking of the matrix algebra (matrix-free methods).
- For very large problems, we implemented fast algorithms suggested on StackOverflow in RCpp, which can execute fast C++ code as an R function.
- We then exported the (polynomial basis expanded) data from MATLAB to R and compared it to the glmnet package using a manual 10-fold cross-validation for the seven UCI data sets.
- The objective function for *glmnet* was suitably transformed.
- Methylation data could not undergo a cross-validation because the algorithm did not converge in sensible time, but we did show better objective values around the optimal lambda obtained by cv.glmnet
- Altogether, around 1,800 lines of code.

• Split the data into equal portions, i.e. 10 parts

2

- Split the data into equal portions, i.e. 10 parts
- Use $\frac{9}{10}$ as a train set

2

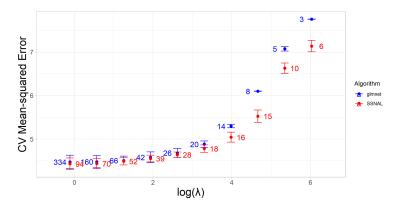
- Split the data into equal portions, i.e. 10 parts
- Use $\frac{9}{10}$ as a train set
- Make predictions for the remaining $\frac{1}{10}$ and compute mean-squared error for that *fold*

э

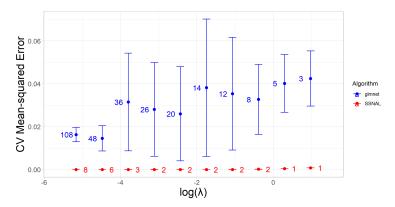
- Split the data into equal portions, i.e. 10 parts
- Use $\frac{9}{10}$ as a train set
- Make predictions for the remaining $\frac{1}{10}$ and compute mean-squared error for that fold
- $\sum (\hat{y} y_i)^2$

3

Figure: abalone

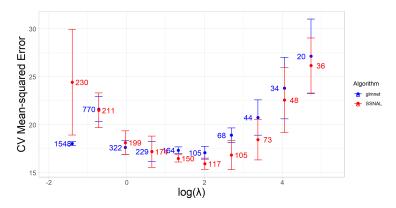


2



2

Figure: housing



2

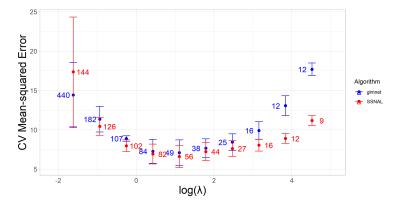


Figure: mpg

2

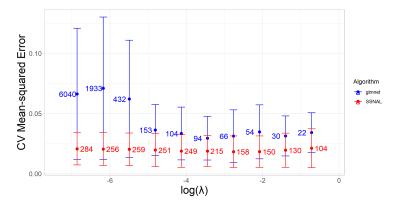


Figure: pyrim

2

(4回) (4回) (4回)

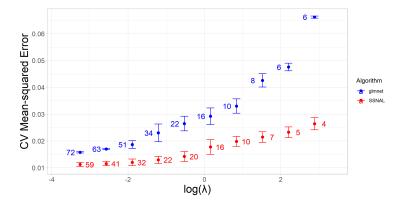


Figure: space_ga

2

0.07 CV Mean-squared Error 0.04 0.03 Algorithm 19686 1462 almnet 🗧 SSNAL 4962 1468 636 1994 181928 340 1514 684 649 218 1014 _ ± 184 + 95546 0.02 -2 2 -4 Ó $log(\lambda)$

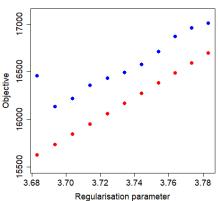
Figure: triazines

2

イロン イロン イヨン イヨン

Objective values: methylation data

Figure: Methylation data



Objective Values

(< Ξ) < Ξ)</p>

4 A 1

Code

Github Repository

Code

johnnymdoubleu/ lassoSSNAL

イロト イヨト イヨト イヨト

Semismooth Newton Augmented Langrangian Method implemented in R

At 2 O 12 the 1 to 0 O Contributors Issues Star Forks

GitHub - johnnymdoubleu/lassoSSNAL: Semismooth Ne... Semismooth Newton Augmented Langrangian Method imple... github.com

э

SSNAL : fast and highly efficient two-phase Semismooth Newton augmented Lagrangian methods for solving large scale Lasso problems.

- SSNAL : fast and highly efficient two-phase Semismooth Newton augmented Lagrangian methods for solving large scale Lasso problems.
- SSNAL : reproduced and presented the algorithm in R package with C++. (Currently, aim to publish on CRAN)

- SSNAL : fast and highly efficient two-phase Semismooth Newton augmented Lagrangian methods for solving large scale Lasso problems.
- SSNAL : reproduced and presented the algorithm in R package with C++. (Currently, aim to publish on CRAN)
- Experiment: UCI, Statlib and Methylation dataset and obtained a promising result with additional comparison against *glmnet*

- SSNAL : fast and highly efficient two-phase Semismooth Newton augmented Lagrangian methods for solving large scale Lasso problems.
- SSNAL : reproduced and presented the algorithm in R package with C++. (Currently, aim to publish on CRAN)
- Experiment: UCI, Statlib and Methylation dataset and obtained a promising result with additional comparison against *glmnet*
- Future Work: on developing a more generalised SSNAL method to apply on Elastic Net, fused Lasso and many more.

Thank you for your attention!

2

・ロト ・四ト ・ヨト ・ヨト